| 1. | Matrix variation basis of sparse matrix multiplication 矩阵相乘的压缩存储算法 |
| 2. | Similarly , the order of matrix multiplication is important 同样,矩阵相乘的顺序也是重要的。 |
| 3. | The following illustration shows several examples of matrix multiplication 下图显示了矩阵相乘的几个示例。 |
| 4. | Congruent matrix multiplication 相合矩阵乘法 |
| 5. | On the other hand , we study asymptotically fast algorithm for rectangular matrix multiplication 本文还研究了矩阵乘法的渐近快速算法。 |
| 6. | You can accomplish this by using a matrix multiplication followed by a matrix addition 可通过先使用矩阵乘法再使用矩阵加法来完成此操作。 |
| 7. | The simplification matter of matrix multiplication is settled thoroughly in the way given in the paper 彻底解决了矩阵乘法计算的简化问题。 |
| 8. | The following matrix multiplication will perform the pair of transformations in the order listed 下面的矩阵乘法将按照列出的顺序进行这对变换。 |
| 9. | But , remember that the product of matrix multiplication is dependent on the order of the operands 不过,记住矩阵乘法的结果是依赖于操作数的顺序的。 |
| 10. | This paper introduces the basic idea and algorithm of sparse matrix multiplication by using incompact storage method 摘要介绍了对稀疏矩阵进行压缩存储时,稀疏矩阵相乘运算的基本思想和算法。 |